Find : 

$(i)$ $64^{\frac{1}{2}}$

$(ii)$ $32^{\frac{1}{5}}$

$(iii) $ $125^{\frac{1}{3}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ $(64)^{\frac{1}{2}}=\left(8^{2}\right)^{\frac{1}{2}}=8^{2 \times \frac{1}{2}}=8$

$(ii)$  $32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}}=2^{5 \times \frac{1}{5}}=2^{1}=2$

$(iii)$  $125^{\frac{1}{3}}=\left(5^{3}\right)^{\frac{1}{3}}=5^{3 \times \frac{1}{3}}=5$

Similar Questions

Classify the following numbers as rational or irrational :

$(i)$ $2-\sqrt{5}$

$(ii)$ $(3+\sqrt{23})-\sqrt{23}$

$(iii)$ $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

$(iv)$ $\frac{1}{\sqrt{2}}$

$(v)$ $2 \pi$

Show that $1.272727 \ldots=1 . \overline{27}$ . can be expressed in the form $\frac {p }{q }$, where $p$ and $q$ are integers and $q \ne 0$.

Show that $0.2353535 \ldots=0.2 \overline{35}$ can be expressed in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$.

Express $0.99999 \ldots$ in the form $\frac{p}{q}$. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.

State whether the following statements are true or false. Justify your answers.

$(i)$ Every irrational number is a real number.

$(ii)$ Every point on the number line is of the form $\sqrt m$ , where $m$ is a natural number.

$(iii)$ Every real number is an irrational number.